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Percutaneous absorption: theoretical description 
W. JOHN ALBERY*$ A N D  JONATHAN HADGRAFT? 

Physical Chemistry Laboratory, South Parks Road, Oxford, OX1 3QZ, U.K. 

Equations are derived to describe the percutaneous absorption of a substance through the 
epidermal barrier. The treatment includes interfacial barriers and allows for the depletion 
of the substance in the external phase. The equations are derived both for the continuous 
application and for pulse experiments where the drug is applied for a time, then removed, 
and the response occurs some time after the removal of the drug. Competition between the 
drug diffusing through the keratinized cells (transcellular route) and diffusing in the inter- 
stitial channels around the cells (intercellular route) is also considered. 

In this paper we develop a theoretical model for the 
transport of a drug through the epidermis. The 
model includes diffusion and depletion in the 
external phase, diffusion through the epidermis and 
following the previous paper (Albery & Hadgraft 
1979) the kinetics of the transfer reactions at the 
interfaces. We derive a complete set of equations 
describing how much of the drug has accumulated in 
the dermis as a function of time. By finding which 
equation best fits the experimental data, we can then 
determine which process is most rate limiting and 
obtain information about the diffusional path length 
in the epidermal barrier. Some parts of the problem 
have been treated previously (e.g. Kakemi et a1 
1975) but in this approach we include the interfacial 
barriers and we also derive analytical expressions 
wherever possible. 

The model 
The model together with the parameters and variables 
is shown in Scheme 1. For most substances the rate 
limiting region for diffusion across the epidermal 
barrier is the exterior stratum corneum (Loveday 
1961 ; Scheuplein & Blank 1971). This layer is made 
up of dead cells separated by narrow channels con- 
taining a lipid phase. The next layer, the stratum 
granulosum, is more aqueous in nature; here the 
diffusion is more rapid and therefore this layer acts as 
a reservoir in which the drug accumulates. Since the 
stratum corneum is the rate limiting region, we 
assume that once the drug reaches the stratum 
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granulosum it does not return. There is no back 
reaction at the internal barrier. This assumption may 
not be true for some drugs which are very soluble in 
the lipid phase (Scheuplein & Blank 1971). For these 
drugs the aqueous stratum granulosum will be the 
main barrier to percutaneous absorption and our 
treatment does not apply to these compounds. 

In the model illustrated in Scheme 1 we have 
included an internal barrier as well as an external 
barrier. In order to simplify the algebra and in order 
not to introduce another parameter, we have., 
assumed the same rate constant kI for both barriers. 
It is possible that there is no  barrier at all at this 
point. For instance the material in the interstitial 
channels may change gradually from a lipid-rich 
phase to an almost aqueous phase. We will therefwg, 
also report results for the simpler model without any 
internal barrier. 

The concentration and distance variables are 
normalized respectively by the bulk concentrations 
(cm) and by the thickness ( I )  of the stratum corneuw- 
We also define 

T = tD,/!L2 .. .. .. (1) 

' , , . < .  

K = kIk?/D, .. .. .. ( 2 )  

p = Do/D, .. .. .. (3) 

n '  = J' KU d T  = n/(ec_)  .. ( 4 )  
and 

0 '  

The equations 
We assume that diffusion takes place in one dimen- 
sion and then applying Fick's 2nd Law of Diffusion 
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we obtain for the external phase 

& =  p 2% . . . .  .(5) 
a x o 2  a?. 

and for the stratum corneum 

At the external interface we have 

and at the internal interface 

(au/ax)l = -w1 . . . . . .  (8) 

If there is no internal interface then u1 = 0. This is 
because the more rapid diffusion in the stratum 
granulosum removes the drug. Equations (7) and (8) 
provide three boundary conditions to solve the 
differential equations (5 )  and (6). The remaining 
boundary condition is: 

as X I * -  ' (9) 

The general solution 
These equations are solved by Laplace transforma- 
tion. Equation ( 5 )  with boundary condition (9) gives: 

Equation (6) with boundary condition (8) gives 

+ (a;/ax), sinhJsl/Jsl . . . .  (12) 

Elimination between equations (7), (10) and (11) 
followed by substitution in equations (12) and (4) 
gives 

- 
7 = - K U l  = i . . . . . . . .  (13) 

S 

where F 
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K 
2 s  K K s  

K t a i h  s K2 Jp t a n h J s  + $) - S j s i n h J s  ( 1  + J + + 

.. .. (14)  

This expression cannot be inverted but it is unlikely 
for any system that all the terms will be significant 
a d  we therefore derive a set of solutions which cover 
dl cases where parameters differ by an order of 
magnitude or more; equation (14) can then be 
simplified by neglecting some of the terms. 

The set of approximate solutions 
The seven approximate solutions for f together with, 
the appropriate conditions are given in Table 1. In 
order to facilitate discussion we have labelled the 
different solutions in the following systematic 
manner. First of all the solutions can be divided into 
thoseforwhich~ << 1 andthoseforwhichr >> 1.  
The former are cases where there has not been enough 
time to establish a linear concentration profile 
across the stratum corneum. These solutions are 
labelled 1. On the other hand when T >> 1 there is 
sufficient time for a linear concentration profile to be 
established and these solutions are labelled 11. 
Secondly, depending on the size of either KT)  or of 
KT the solutions may be divided into two classes 
labelled A and B. The A solutions are found for 

~ 2 ~ 2  >> 1 

K2T << E >> .F!- 

K K T  b 2Jpr f 
( Z + K ) ~  K2 ( 2 + ~ ) '  K2 

.f 
2 + K  

, I IBl  I182 

smaller values of mn and correspond to those cases 
where the interfacial transfer kinetics are at least 
partly rate limiting. On the other hand, with one 
exception, the B solutions are independent of K and 
the interfacial transfer kinetics are not rate limiting. 
The one exception is solution I1 A2 when K < < 1. 
For these conditions the kinetics of the transfer at  
the interfaces are always rate limiting. Thirdly, we 
can divide the solutions into classes 1 and 2 depend- 
ing on whether depletion in the external phase is 
partly rate limiting or not. All the class 2 solutions 
contain p and depletion is partly rate limiting, 
whereas all the class 1 solutions are independent of 
p and depletion is not rate limiting. The rate limiting 
processes for the different solutions are summarized 
in Table 2. 

Next we consider how any system will evolve with 
time through the different solutions. From the 
conditions for T in Table 1 we conclude that all 
systems start with solution IA1. This corresponds to 
the non-linear concentration gradient in the stratum 
corneum (I), interfacial kinetics important (A), 
depletion unimportant (1). As T increases the system 
will pass through one or two intermediate solutions 
and will eventually reach the other extreme solution 
IIB2. This final solution is the opposite of IA1 and 
corresponds to a linear concentration gradient (11), 

Table 1. Approximate solutions for f from inverting equation (14). 

IAl IA2 IB(1 G 2 I a  

a IB1 is found for p/KB <1 and IB2 for p/Ka >> 1. 
Reduces to *KKT for K~ <1 and to KT for K ~ >  1. 
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Table 2. Rate limiting processes for the different solu- 
tions in Table 1. 

JONATHAN HADGRAm 

tion. In practice it may be that only one or two of the 
cases can actually be observed for any particular 
system. For instance the system may pass through 
the first case IA1 at times that are too short for any 
response to be detected, or the experiment may not 
last long enough for the system to reach the final 
solution IIB2. However, we believe, firstly that experi- 
mental data should be tested against all the different 
solutions in order to select the one that fits best, and 
secondly that the complete pattern of solutions aids 
our understanding of the evolution of the absorption 
process and the interplay of the various possible rate 
limiting processes. 

For the case of the simpler model where there is no 
internal interface we obtain all the same solutions in 
class A except that the denominator in HA2 is 
(1 + K )  instead of (2 + K).  There are no class B 
solutions except for solution IB2. Under these 
conditions we obtain 

IA1 
2 

B1 
2 

IIAl 
7 

External External Stratum Internal 
phase interface corneum interface 

X 4 4 .! 

interfacial kinetics unimportant (B) but depletion 
important (2). Which intermediate solutions the 
system passes through depends on the size of K ,  the 
normalized interfacial transfer rate constant, and on 
p/K2, which compares transport in the external 
phase with that in the stratum corneum. Fig. 1 
displays the information in Table 1 and shows the 
different possible sequences, the conditions under 
which they are found and the values of 7 at which the 
system passes from one solution to another. At these 
values of r reasonably good agreement is found for 
the corresponding values off in Table 1 from the two 
merging solutions. Hence the set of solutions in 
Table 1 provides a reasonably complete description 
of the accumulation of drug by percutaneous absorp- 

r - 0  

t-al 

FIG. 1. Interrelation of solutions in Table 1.  At T = 0 
all systems start in solution IAl and as 7 +CO all 
systems would end in IIBZ. Depending on the relative 
sizes of the parameters the system passes from IAl to 
IIBZ through the intermediate solutions as shown. 

and the flux is controlled by the penetration of the 
external barrier followed by diffusion across the 
stratum corneum. From Table 2 we can see that the 
solutions that have been 'lost' are those where the 
internal interface was one of the main rate limiting 
terms. 

Pulse experiments 
In  the simplest type of experiment, the drug is 
applied continuously. However, the different models 
for percutaneous absorption can be further tested if 
the drug is applied for a time t, and then removed. 
The response to the accumulated drug then occurs 
after a further period of time tz. This type of experi- 
ment is particularly valuable for substances of low 
solubility where the concentration in the external 
phase cannot be varied over a wide range. The 
variation of tl provides an alternative experimental 
variable (Albery & Hadgraft 1979). 

After the removal of the drug at time t, we need 
only describe the transport in the stratum corneum 
and the penetration across the internal interface. 
The differential equation is the same as equation (6)  
except that we define a new time scale which starts at 
t,: 
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The boundary conditions for this equation are 
equation (8) at the external interface, 

(adax), = 0, 

and at ? ' = o  

u = p) 
T = T 1  

where ii'is a function of s1 and x given by the solution 
of equations ( 5 )  and (6) as discussed below. The 
accumulated drug at time T~ is given by: 
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= f ( r , )  + T p  .. .. (16) 

The first term describes the drug that accumulates 
before t, when the source of the drug is removed. The 
function f has been discussed above. The second 
term, T,, describes the further accumulation of drug 
that had diffused into the stratum corneum before t, 
and which then subsequently penetrates the internal 
interface. 

This term is found by taking the double Laplace 
transform of u with respect to both T and T'. We 
obtain 1; co s h (Js I x ) I dx 

1 Js' sinhv's'  +KcOshv's' 

- - 
u =  

.. .. (17) 
where 

; I  = A  cosh(v'sx) + B sinh(v's x ) ,  

from the d e f i n i t i o n  of f 

sf = A cosh Js + B sinhv's 

and from eqr? ( 1 1 1 ,  

_-- A Js + ytanhJs 
B -  K+ J s  tanhv's 

Elimination of A and B, evaluation of the integral in 
equation (17) and substitution in equation (16) gives 

.. (IS) 
Again we cannot invert the double transform for 

all values of s and s' but in Table 3 we collect to- 
gether a set of approximate solutions. The appropri- 
ate regions for the different solutions are shown in 
Fig. 2. 

FIG. 2. The approximate solutions P1, P2 and P3 in 
Table 3 for the pulse experiments are applicable for 
the values of T~ and 7% shown in the diagram. 

For most cases of solutions PI and P2 the expres- 
sion is dominated by the f(7,) term which describes 
theaccumulation of thedrug (in thestratum corneum) 
before its removal from the outside of the skin. In  
solution P1 the T~ term describes a small amount of 
accumulation immediately after the removal of the 
drug. In solution P2 when K is large there is not much 
drug in the stratum corneum compared with that 
already accumulated. However when K is small, then 
the drug may be trapped in the stratum corneum, and 
subsequently leak out during the tz period; for this 
case the T~ term may be significant. In solution P3, 
the drug is applied for a short time compared with 
the characteristic time for its diffusion across the 
stratum corneum. It therefore has to be 'stored' close 
to the external interface. This is described by the f" 
function. For solution PI the rate-limiting process is 
either diffusion in the epidermis (,/p/K >> 1) or 
diffusion and depletion in the external phase 
(JpjK << 1); for solution PI1 the rate-limiting 
process is the transfer reaction at the external inter- 
face. For solution P2 T~ is long enough for all the 
stored drug to reach the internal interface where its 
penetration is controlled by K .  For solution P3 T~ is 
small and only a small fraction of the stored drug has 
time to reach the internal interface. 

Similar solutions are obtained for the model where 
there is no internal interface. In Table 3 for all 
solutions we take the limit where K -+ co; this of 
course corresponds to removing the barrier at the 
internal interface. The appropriate f must be used as 
discussed above and f" in PI and PI1 is unchanged. 

Multiple barriers 
In the treatment so far our model has two interfaces. 
This will be approximately true if the drug penetrates 
through the intercellular channels. However, a 
different possible route involves diffusion straight 
through the dead cells in the stratum corneum. In 
this case there may be many interfacial barriers 
situated at the boundaries between the dead cells and 
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Table 3. Approximate solutions for pulse experiments from equation (18). 

Condi t ion Solution Labe l  

Solutions for 

f (T1)  are givcn  in t ab le  1 

PI 

the interstitial channels containing lipid phase. In the 
appendix we show that, providing 

t > kIk3D-' 
T 

passage across n such barriers, is described by the 
ordinary diffusion equation used above but instead 
of D, we must use an effective diffusion coefficient 
given by 

The effective diffusion coefficient is determined by 
the slower of the two processes the ordinary diffusion 
DT or the 'diffusion' through the multiple barriers. 
But in either case the form of the equations derived 
above is not changed. This conclusion for inter- 
facial barriers is similar to that reached by Higuchi 
(Higuchi & Higuchi 1960; Yotsuyanagi & Higuchi 
1972) for diffusion in a two phase system. 

Parallel routes 
The model in Scheme 1 shows only one route for the 
penetration of the drug. It is possible that the drug 
penetrates simultaneously by diffusion through the 
dead cells and also through the intercellular channels. 
Furthermore Scheuplein & Blank (1971) have 
pointed out that there may be a change in the route 
of penetration with time. At short times routes with 

preferred. The drug therefore may start by penetrat- 
ing through the channels but in the steady state the 
route may be through the dead cells. In this section 
we examine the factors that describe which route is 
preferred and whether such a change in mechanism 
is possible. 

The model 
The model is shown in Fig. 3. The epidermal barrier 
consists of n layers of dead cells. The route round the 
dead cells is of average length Ic, which we assume 
to be at least five times larger than the thickness of 
the barrier, 1. The geometry of the barrier has been 
idealized as shown in Fig. 3. This idealized geometry 
is based on the model of Michaels et a1 (1975). In 
our model we have not included any cell stacking. 
However even if there was some cell stacking 
(Christophers & Kligman 1964), it is still likely that 
lc/l is greater than 5. The diffusion coefficients are 
DT and Dc for the cells and the channels respectively. 
We assume that there are no interfacial barriers and 
that the concentration of material in the channel is 
given by K c  where c is the concentration in the 
adjacent dead cells and K' is the partition coefficient 
for material between channels and cells. We make no 
assumptions about the size of K or the relative 
sizes of DT and Dc. We take the simple boundary 
conditions that co the concentration of drug applied - _ _  

small cross sectional area but high values of D/P are to the skin is constant and that c the concentration at 



PERCUTANEOUS ABSORPTION : THEoREnCAL DESCRIPTION 135 

O ' O T  
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FIG. 3. Simplified model of the stratum corneum consisting of n layers of dead cells and with interstitial 
channels of length I,. Parameters for the two different routes of penetration are shown. 

the inside of the barrier is zero. We then calculate the 
flux. 

The diflerential equations 
The differential equation for diffusion in the cells is 

where T and x are the same as for Scheme 1 and 
equation 1 with D, = DT. We solve this differential 
equation for each layer of dead cells using the Lap- 
lace transformation and we obtain the following 
relations for the jth layer 

- - cosh(t's/n) + s-*(a&). sinh(Js/n) 
J .. .. (20) 'j+l = 'j 

and 

cj-l = j j 
cosh(t's/n) - s-*(a;/ax)- sinh(Js/n) 

.. ..(21) 
Because we have assumed there are no interfacial 
barriers the concentration of drug at the jth level is 
the same on both sides of the channel. However, the 
gradient (&/ax) may be different because material 
is supplied or lost to the transverse channel. Thus 
(ac/ax)-j and (ac/ax)+j are gradients on the 
external and internal faces of the channel respect- 
ively (see insert in Fig. 3). 

Next we consider the concentration at a point j in a 
channel and we obtain 

The 6rst term on the right-hand side describes 
diffusion along the channel and the second term the 

supply of material to and from the dead cells. We 
express this equation in dimensionless variables and 
obtain 

6 = L / K ' n &  .. .. ..(23) 

We take the Laplace transform of this equation and 
substitute from equation (20) and (21) to obtain 

I- -.I 

L .. (24) 
where we have written 

- - aLc 

J n2 ax, -4 cj+l + cj- l  - 2c.  2 - 

The solution 
Equation (24) is then solved for the boundary condi- 
tions to give 
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S 3  - 
s i n h ( J s / n )  n-1 

. . (27) The flux is given by 
nDc6K' 

z =9. z=a 
c c  

' f i e  fist term on the right-hand side describes the 
flux into the dermis through the dead cells and the 
second term the flux through the channels. In order 
to describe the flux we define the dimensionless 
quantity F where 

From equation (21) with j = n 

Combining equations (25) (26) and (27) we obtain 

The set of approximate solutions 
Depending on the relative sizes of u,P and n we 
distinguish the different cases shown in Fig. 4. In 
Table 4 for each case we have listed approximate 
solutions for F. 

As t rises, in Laplace space the transformed 
variable s decreases. Therefore the approximations 
in s for the large values of s correspond to the trans- 
ient behaviour whereas the approximations for s 
tending to zero describe the steady state. The solu- 
tions divide into two groups, the T group where the 

Table 4. Approximate solutions for F (equation (28)) for the cases shown in Fig. 4. 

Case 

T I  

T r a n s i e n t s  Steady s t a t e  

- 1  
cosech s' 5 1  

, - t  
4 

T I 1  

C I  

CII 

C I I I  
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FIG. 4. The approximate solutions (TI, TII, CI, CII 
and CIII) in Table 4 for penetration through the 
model shown in Fig. 3 are applicable for the different 
values of a and j3 shown in the diagram. From equations 
(22) and (23), a = (DC/Ic2)/CD~/Is) and ,8 = I/Kn& 

drug is transported by the trans-cellular route and 
the C group where the drug is transported through 
the channels. The dividing line between the two 
groups is a = p or from equations (22) and (23) 

K ' D  6 D 8 
c = L r _ 4  

L n  kc 

The left-hand side describes the steady state diffusion 
along the channels and the right-hand side the 
diffusion through the cells; there is one channel of 
width 6 per length fc/n of dead cells (See Fig. 3). 

All the transient solutions in Table 4, except for H, 
have the form s-* cosech (constant x st). Equation 
(14) for f(where = sK-$ reduces to the same form 
when the K and p terms are neglected in the denom- 
inator. Thus except for H the transient behaviour is 
the same as discussed for case IAin Table 1 providing 
that the appropriate diffusion coefficient, partition 
coefficient and length are used. Taking each of the 
cases in turn we start with TI. In this case transport is 
through the dead cells and the channels are irrelevant. 
The normalization with DT and I is correct and 
neither a nor p are found in the expression for %. For 
case TI1 the parameter /3 is smaller than one. This 
parameter (p  = I/K'n) compares the number of 
moles of drug in the cells and in the channels at 
equilibrium. In a unit area of epidermis the volume 
ratio is givenby n channels of thickness 6 in the total 
thickness I. Therefore if p > 1 more material 
accumulates in the cells and if p < 1 more material 
accumulates in the channels. For case TI1 (where 

fi < 1) the transport is still through the cells but it is 
slowed down by having to saturate the channels. 

In case CI transport is through the channels and 
the dead cells merely get in the way. The quantity a 
(a = Dd2/D,I;) divides s because, instead of DT 
and I ,  Dc and Ic should have been used for the 
normalization. Similarly p describes the correct 
partition coefficient and geometry for the channels. 
In Fig. 4 Case CI does include an area where a > 1 
and material accumulates in the dead cells. However 
the number of moles that accumulate in the dead 
cells is small at all times compared with the number 
that penetrate to the dermis and hence the dead cells 
have an insignificant effect on the rate of absorption. 
This is not true for cases CII and CIII. In these cases 
the function H in Table 4 describes the penetration 
of material through the channels to the dermis while 
at the same time significant quantities of the drug are 
being absorbed by the dead cells lining the route. The 
third transient approximation for CIII may be con- 
trasted to TII. As in all the C solutions a changes the 
normalization to the channel parameters, and /3 
describes the slower transient because material is 
accumulating in the cells while being transported 
through the channels. In CII and CHI the penetration 
is slower than CI because the channels feed the cells 
while in TI1 the penetration is slower than TI because 
the cells feed the channels. 

An important conclusion can be drawn from the 
solutions in Table 4, and that is that there is no 
change in the route of penetration with time. For all 
the cases the same route is found for the transient 
expressions and for the steady state solution. This 
conclusion for the two routes through the epidermal 
barrier may be contrasted with the discussion of 
Scheuplein & Blank (1971). They showed that routes 
through the skin appendages (e.g. hair follicles and 
sweat ducts) may be preferred at short times although 
in the steady state penetration takes place through 
the whole of the epidermis. In this case the change in 
mechanism is possible because the follicles and ducts 
pass straight through the epidermal barrier. In our 
idealized geometry we have not included any cell 
stacking. For the perfect stacking of cells some 
channels will resemble pores and the treatment of 
Scheuplein & Blank (1971) would then be applicable. 
Any theoretical treatment requires an idealized 
geometry and our treatment therefore describes the 
opposite extreme to that of Scheuplein & Blank. In 
our case there is a continual exchange of material 
between that in the channels and that in the dead 
cells. This exchange ensures that the same route is 
preferred at all times. 
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A P P E N D I X  
In this appendix we consider diffusion through the 
dead cells of the stratum corneum with the presence 

shown in Scheme 2. -.i 

above. The flux, F ,  is given by 

At any barrier 
- -  of interfacial barriers. The model and notation are ;; = K ( U j  - U ) 

The definitions of p,. x ,  K and T are the same as 
and elimination of ii. gives 

I 

The differential equation between the 
barriers 1s: -  

By Laplace transformation we obtain f o r  
any gap between tne barriers:- 

. . :32) 

Equations (30) and (32) therefore describe the effect 
of each gap and barrier on D and ii'. By repeated 
application for the n barriers we can in principle 
obtain two relations between the flux into the stratum 
granulosum at n, given by u ' ~  and the boundary 

The general case is intractable, but, if we assume 
that s < K < n, then the +JsS/K term in equation (32) 

and ;j-l = C - S/V's .. .. (31) can be neglected. We can also write C 'Y 1 and S 2: 
-j j Js/n. With these approximations repeated application 

of equations (30) and (32) gives: 

= i! C - Js .S .. .. (30) conditions, u - ~  and on the surface at x = 0. 
J -J 

where C = cosh(/s/n) and S = sinh(v/s/n) 

and 

where s" = S ( l + n / K )  



PERCUTANEOUS ABSORPTION : THEORETICAL DESCRIPTION 139 

w e  now compare this pair of equations with the pair 
of equations (30) and (31) when in the !atter pair we 
put j = n = 1. We see that the equations have the 
Same form except that s is replaced with s” and O’j 
with O’j(1 + n/K). These two transformations are 
equivalent to replacing DT by D T / ( ~  + n/K). A change 
in D changes the relation between the flux and the 
concentration gradient given in equation (29) and 
(eqn (1)) it changes the definition of the dimensionless 
time 7 and hence s. When n = j = 1 there are no 
barriers in the middle, and diffusion is the rate limiting 
process. With the multiple barriers the same relations 
between the fluxes and 8* are Cbtained except that 
the effective diffusion coefficient, D, is given by 

_I_ 1 ’ + ”  
D T  KDT 

1 n  

D T  k I e  
= - + -  

The condition for t h i s  simplification is t h a t  

s < K or T > c or t > k i 3 / C :  
I 

It is interesting that when s = K, S” 2: n > 1. Hence 
the diffusion kinetics not only describes the eventual 

steady state but also the approach to that steady state. 
If n -10, then, when s” -10 and this treatment 
breaks down, the hyperbolic terms in equations (33) 
and (34) are so large that very little material indeed 
will have penetrated. Thus this treatment covers the 
whole time period when significant quantities of drug 
are being accumulated. 
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